Stable Stacking Faults Bounded by Frank Partial Dislocations in Al7075 Formed through Precipitate and Dislocation Interactions

نویسندگان

  • Sijie Li
  • Hongyun Luo
  • Hui Wang
  • Pingwei Xu
  • Jun Luo
  • Chu Liu
  • Tao Zhang
چکیده

Through high-resolution electron microscopy, stacking faults (SFs) due to Frank partial dislocations were found in an aluminum alloy following deformation with low strain and strain rate, while also remaining stable during artificial aging. Extrinsic stacking faults were found surrounded by dislocation areas and precipitates. An intrinsic stacking fault was found between two Guinier-Preston II (GP II) zones when the distance of the two GP II zones was 2 nm. Defects (precipitates and dislocations) are considered to have an influence on the formation of the SFs, as their appearance may cause local strain and promote the gathering of vacancies to lower the energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals.

Stacking fault tetrahedra, the three-dimensional crystalline defects bounded by stacking faults and stair-rod dislocations, are often observed in quenched or irradiated face-centred cubic metals and alloys. All of the stacking fault tetrahedra experimentally observed to date are believed to originate from vacancies. Here we report, in contrast to the classical vacancy-originated ones, a new kin...

متن کامل

Stacking faults and partial dislocations in graphene

We investigate two mechanisms of crystallographic slip in graphene, corresponding to glide and shuffle generalized stacking faults (GSF), and compute their -curves using Sandia National Laboratories Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). We find evidence of metastable partial dislocations for the glide GSF only. The computed values of the stable and unstable stackin...

متن کامل

Investigation of extended stacking fault emission from grain boundaries using a density functional theory -informed 3D phase field dislocation dynamics model

As characteristic length scales shrink (<100 nm) in fcc metals, alternative deformation mechanisms not seen in bulk and course-grained material counterparts emerge. In particular in grain sizes on the order of 10s of nanometers, plasticity is mediated by the motion and interaction of partial dislocations and extended stacking faults. Typically, partial dislocations nucleate at grain boundary de...

متن کامل

Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the e...

متن کامل

A modified model for deformation via partial dislocations and stacking faults at the nanoscale

The partial dislocation model for the deformation mechanism of nanocrystalline materials is extended to consider the influence of non-uniform dislocation extension. The non-uniform partial dislocation extension model is more consistent with experimental data than the original partial dislocation model. Additionally, the flow stress obtained from the non-uniform extension model is compared with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017